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Needs for Approximation in 
Conceptual Design

• Historical or design data fitting
• Calibration of low-fidelity model 
• Capture second order trend with 

a few data points
• Global smooth approximation



Aircraft Conceptual Design
• Will the concept work?
• What does it look like?
• What requirements 

drive the design?
• What trade-offs should 

be considered?
• What should it weigh 

and cost?

Daniel P. Raymer, “Aircraft Conceptual Design”
2nd Edition, AIAA Education Series (1992).

NASA Applications:  Technology assessment 
and revolutionary vehicle concept evaluation



Conceptual Design Requires 
Multidisciplinary Analysis

Weight and Balance

Engine Cycle Analysis

Aerodynamics

Cost

Takeoff
& Landing

Field Lengths

Takeoff
& Climb
Profile

Community
& Airport

Noise

Mission
Performance

Time constraint: weeks to months for conceptual design



• Bending material
– Low-fidelity structural analysis for stress sizing 

• Approximate aerodynamic forces on wing
• Approximate structure with plates: variable 

thickness, chord, and sweep angle
• Approximate engines with masses

– Response surfaces for constraints like flutter and  
divergence

– Correlation with existing aircraft for ideal versus 
“ as-built”  weights

• Spars, ribs, and control surfaces
– Depends on control surface area

• Miscellaneous wing weight
– Depends on wing area

Need for Approximation Methods 
Wing Weight Estimation Example (by McCullers)



Two Basic Needs for Approximation

• Need accurate approximations of 
historical data that are scarce and 
poorly distributed in a high-dimensional 
space.

• Need calibration of a low-fidelity 
simulation code to match high-fidelity 
data.

RSM is a popular choice for approximation in engineering 
simulation. But RSM works best with design of experiments 
for a local approximation and can not meet the critical needs 
for approximation in conceptual design.
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Curse of Dimensionality

• The curse comes from the fact that given a 
finite number of data points, the high-
dimensional unit cube is mostly empty. 
(Friedman and Stuetzle, 1981)

• The curse implies that unless you have an 
enormous number of data points generated 
by a simulation model, any data fitting 
method will not get a good approximation of 
the true response of the simulation model.

Bottom Line: Forget about good fitting in high-dimensional spaces.



Variable Screening

Traditional approach
1. Evaluate the response with a 2-level fractional 

factorial design.
2. Identify main effects that account for most of the 

variance in the response.

Adaptive variable screening
1. Randomly divide variables into groups.
2. Determine main effects and quadratic effects 

between the groups.
3. Eliminate any group of variables with small effect.
4. Repeat from step 1 with remaining variables until 

analyst is satisfied.



Adaptive Variable Screening Technique

• Typical results: If there are a large number 
k of variables but only a few important 
ones, then group screening requires m << 
k analyses.

• Assumptions: 
– Fewer analyses are needed to rank by 

importance than to quantify importance.
– A knowledgeable user can identify the true 

important variables from a ranked list of 
variables, even if some insignificant variables 
are misclassified as important ones.



Variable Screening (Lyle, Stockwell, & Hardy, 2003)
Four variables are highly correlated with crash survivability

Yield stress

4. Drop test instrumented fuselage

2. Identify four important variables1. DOE with low-fidelity analysis

3. High-fidelity simulation with reduced number of variables
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Interpolation of Data

• Polynomial interpolation (1D, but 2D 
requires nice data distribution)

• Spline interpolation (1D and 2D, any data 
distribution)

• Kriging interpolation: any dimension and 
any data distribution

• Radial basis function (RBF) interpolation: 
any dimension and any data distribution



History of Kriging Interpolation

• D. Krige (a South African mining engineer) 
developed Kriging in the 1950s to determine 
true ore-grades based on samples.

• Other contributors: G. Matheron (a French 
mathematician), L. Gandin (a Soviet 
meteorologist)

• Application of Kriging as approximation tool 
for simulation analysis: J. Sacks, W. Welch, 
T. Mitchell, and H. Wynn (1989)



Basics of Kriging Interpolation

• Estimating a stationary random process:

f(x) = µ + δ(x), 
where µ is the mean and δ(x) is the variance. 

• Kriging Interpolation:

– Var[f(x+h)-f(x)] = γ(h)
– Gaussian model: γ(h) = 1-exp(-||h||2/σ2)
– f(xj) = yj for 1 ≤ j ≤ n
– f(x) = Σ λj(x) yj,  Σ λj(x) = 1 (weighted average)



Basics of Radial Basis Function (RBF) Interpolation

• Hardy’s multiquadric function for 
meteorological applications (1971):

γ(t) = (t2+a2)1/2 (no statistical meaning)

• Multiquadric RBF Interpolation:
– f(x) = Σ1≤k≤n ck γ(||x -xk||)
– Find ck such that f(xi) = yi for 1 ≤ i ≤ n

• C. Micchelli (1985): RBF interpolation can be 
applied to any dimension and any data 
distribution with an appropriate choice of γ(t).

• Other choices of γ(t): Gaussian or γ(t) =  
exp(-t2/a2), linear, cubic, inverse-quadratic, 
and thin-plate spline



Relation Between Kriging and RBF Interpolation

The above constrained interpolation problem was 
studied by numerical analysts (Powell, 1998) without 
any reference to Kriging interpolation.

Good News: Algorithms for RBF interpolation 
can be used for Kriging interpolation!



Computation of RBF Interpolation

• Domain decomposition method by 
Beatson, Faul, Goodsell, and Powell

• Multipole method by Powell, Beatson, 
Light, and Newsam.

• Powell (2002) demonstrated that RBF 
interpolation problems with up to 45 
variables and 4096 poorly distributed
data points can be solved easily.

• Booker, Dennis, and etal (1998) used 
Kriging interpolation (with 31 variables 
and hundreds of evenly distributed data 
points) for helicopter rotor blade design.



RBF Interpolation for Skull Defect Repair

By J. Carr, W. Fright, and R. Beatson (1997)
IEEE Transactions on Medical Imaging



Poor Prediction of RBF Interpolation
Outside Data Region

Data Region



Recommended Use of RBF Interpolation
in Conceptual Design

• Historical or design data fitting
• Calibration of low-fidelity model 
• Capture second order trend with 

a few data points
• Global smooth approximation
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Trades Between Fitting Error and Smoothness

By Cleveland and Loader, 1996, sickness 
rates for ages 19 to 79 (Spencer’s data, 1904)



Local Regression for Smooth Approximation

• Locally weighted regression, local polynomial fitting: 
Stone (1977) and Cleveland (1979, free software)

• Moving least-squares: Lancaster and Salkauskas (1981)
• Lazy learning (in neural network community): No 

explicit mathematical expression for the approximation 
• Generate accurate and smooth fitting of nonlinear 

responses.
• Require densely distributed data points.
• Useful for real-time design space exploration based on 

high-fidelity results. (Tu and Jones, 2003)



Recommended Use of Local Regression
in Conceptual Design

• Historical or design data fitting
• Calibration of low-fidelity model 
• Capture second order trend with 

a few data points
• Global smooth approximation
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Robust Data Fitting

Outlier



Robust Data Fitting
Robust data fitting is similar to least-squares data 
fitting, except the fitting error is measured by a 
cost function ρ(error) instead of squares of error:

Choices of ρ: 1-norm (ρ(t)=|t|) 
or Huber’s cost function, i.e.,

Control parameter r provides continuous morphing 
from least-squares fitting to 1-norm fitting.
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• A. Hoerl and W. Kennard (1970) proposed 
ridge regression for automatic selection or 
simplification of the fitting model:

• R. Tibshirani (1996) demonstrated that the 
1-norm penalty term does a better job:

Ridge Regression to Avoid Overfitting (m>n)

The penalty term in the red box forces cj to 
be zero if hj(x) is not useful for data fitting.



Quadratic Smoothing and Interpolation

Similar to ridge regression, the penalty objective 
forces irrelevant quadratic terms to be zero. At the 
same time, minimizing the energy of second 
derivatives yields a smooth approximation.



Recommended Use of Ridge Regression 
in Conceptual Design

• Historical or design data fitting
• Calibration of low-fidelity model 
• Capture second order trend with 

a few data points
• Global smooth approximation
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Principal Component Analysis

u1 (1st feature vector)

u2 (2nd feature vector)

Irregular data distribution in the input space:
historical/measurement data, or design data



Example of Data Fitting in Feature Space

Fitting the data along the 1st feature direction

u1

u2



Principal Component Regression (PCR)

• Principal Component Analysis has 
been widely used for dimension 
reduction in speech recognition (such 
as feature extraction of a spoken 
sentence) and other pattern 
classification problems.

• Idea of PCR was proposed by W. 
Massey (1965).

• PCR is a popular tool for developing 
calibration techniques used in near-
infrared reflectance spectroscopy ...    



Data Fitting in Feature Space



Recommended Use of PCR
in Conceptual Design

• Historical or design data fitting
• Calibration of low-fidelity model 
• Capture second order trend with 

a few data points
• Global smooth approximation
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Variable-Fidelity Aerodynamics Calculation

Cl vs Cd at Re=6E6
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Variable Fidelity Approximation



Illustration of Variable Fidelity Approximation



Recommended Use of Variable Fidelity 
Approximation in Conceptual Design

• Historical or design data fitting
• Calibration of low-fidelity model
• Capture second order trend with 

a few data points
• Global smooth approximation
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Selection of Model Parameter

Goal: Choose the model parameter that provides the 
maximum predictive capability for the given data.
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Maximum and Minimum Ridges of 
a Quadratic Polynomial

Maximum Ridge

Minimum Ridge



Visualization of Quadratic Polynomial of Many 
Variables by Ridge Analysis (Hoerl)



Concluding Remarks
• Historical or design data fitting

– RBF fitting
– Data fitting in feature space

• Capture second order trend with a few data 
points
– Ridge regression
– Powell’s smooth quadratic interpolation

• Calibration of low-fidelity model
– Multiplicative correction
– Additive correction 

• Global smooth approximation
– Local Regression 

• Visualization: Maximum and minimum ridges



Future Research Problems

• Multiplicative or additive correction that 
preserves some physical characteristics 
of the high-fidelity data (such as the 
scaling grows linearly or quadratically
outside the data region)

• Interpolation that allows inhomogeneous 
directional trend prediction

• Given a quadratic function q(x) and an 
integer m, find vectors uk and univariate
quadratic polynomial pk(t) such that 
Σ1≤k≤m pk(uk•x) approximates q(x) the 
best on a compact convex set.

• Mathematical theory on the smoothness 
of local polynomial fitting
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